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Abstract
We present simulations of large amplitude standing capillary
waves of a planar interface separating two immiscible phases
of different densities and viscosities. The simulations are con-
ducted using an in-house developed VOF based solver. We vary
the amplitude to wavelength ratio to understand the effect of
non-linearity on standing capillary waves. It is shown that the
time-period of the first oscillation increases with amplitude, a
non-linear effect. For small amplitude ratios, the observations
are in agreement with the linearised predictions. For larger
ratios, significant departure is observed in the motion of the
interface. An increase in the ratio leads to generation of
higher modes other than the initial mode. Through Fourier
decomposition of the interface shape, it is shown that the
earliest modes to emerge as a result of non-linearity, are odd
numbered modes. We present results showing the diffusion of
vorticity from the interface in the non-linear regime.

Keywords—Volume-of-Fluid method; Computational Fluid Dy-
namics; Interfacial oscillations; Non-linear oscillations

I. INTRODUCTION

Flows with an interface separating two or more immiscible
phases are often dominated by capillary effects especially at
small length scales where surface tension dominates over grav-
ity. Examples include spreading of millimetric sized droplets
([1],[2]) on rigid surfaces, the various modes of possible
deformation during droplet impact on a deep liquid pool [3],
parasitic capillary waves observed on larger gravity waves
[4], standing waves observed in Faraday instabilities [5] and
many other interesting examples. When the deformation of the
interface is small compared to some horizontal length scale
like wavelength, analytical solutions may be obtained. How-
ever many practically relevant regimes involve large interface
deformation (e.g. instabilities) which are not always accounted
for by linearised theories. Such large amplitude deformation is
studied here using numerical simulations of the Navier-Stokes
equations. We report results of free oscillations of a planar
interface separating two immiscible phases in the linear and
non-linear regime. The simulations are conducted using an in-
house code based on the VOF [6] method and coupled to the
incompressible Navier-Stokes equations.

For an interface separating two vertically unbounded
(±y → ∞) fluids of density ρu and ρl (u and l stand for
upper and lower fluid respectively, see Fig. 1.) with interfa-
cial tension coefficient σ, the inviscid potential flow solution
with velocity potential φu and φl generated by a standing
wave is given by φu(x, y, t) = −k−1e−ky cos(kx)dak

dt and

φl(x, y, t) = k−1eky cos(kx)dak

dt . Note that in the absence
of gravity, upper and lower fluids are symmetric. Here the
standing wave (of wavenumber k) is η(x, t) = ak(t) cos(kx).
The equation governing the time evolution of ak(t) is,

d2ak(t)

dt2
+

[
σk3

ρu + ρl

]
ak(t) = 0. (1)

Eq. 1 is obtained by expanding unknowns in powers of ε
(ε ≡ kak(0)) and retaining upto O(ε) terms in the governing
equations and boundary conditions. We also obtain the deep-
water dispersion relation ω2

k = σk3/(ρu +ρl) in Eq. 1. Poten-
tial flow allows for slip at an interface and produces viscous
stresses in the flow [7]. Due to jump in viscosities across
the interface, the tangential stress (and tangential velocity)
remain discontinuous across the interface, in a potential flow.
To make these continuous, an additional viscous, rotational
velocity field is required. The interface thus acts as a source
of vorticity and its motion gets coupled to the unsteady vortical
field through boundary conditions. This rather complex effect
of viscosity, modifies the inviscid Eq. 1 leading to additional
damping terms proportional to dak

dt , and produces a dependence
on the time-history of ak(t), leading to a integro-differential
equation for ak(t). In the linearised regime, this was first
shown by Prosperetti [8]. For arbitrary density and viscosity
ratios he obtained the equation,

d2ak
dt2

+ 2k2(µu + µl)
dak
dt

+
σk3

ρl + ρu
ak − k (µuΩu(0, t)+

µuΩl(0, t)
)

+ 2k2
(
µu

∫ ∞
0

Ωu(y′, t)e−ky
′
dy′

+ µl

∫ 0

−∞
Ωl(y′, t)eky

′
dy′
)

= 0

(2)

In Eq. 2, Ωu and Ωl are the vorticity fields in the two
fluids [8]. Solutions of the above equation are thus restricted
to the linear regime. In many situations like Faraday waves
[5], the non-linear regime of oscillations are significant. To
improve our understanding of the non-linear regime, we study
it numerically. We present simulations for range of viscosity
and density ratios and quantify the non-linear effects in free
capillary driven oscillations.

II. METHODOLOGY

The simulation geometry is depicted in Fig. 1. We solve the
incompressible Navier-Stokes Eqs. 3 in both the two phases,
along with the volume-fraction equation for F . We use the
LVIRA algorithm [9] for interface reconstruction.
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Fig. 1. Simulation geometry - Two fluids of density and viscosity ρu, µu
and ρl, µl are separated by an interface η(x, t). The initial shape is η(x, 0) =
a0 cos(kx) a standing wave. We use symmetry boundary conditions on all
four sides. The domain is [0, 1] × [0, 3] with 64 × 192 chosen to mimic
unboundedness in all directions.

∇ · ~u = 0
∂~u

∂t
+∇ · (~u~u) = − 1

ρu/l
∇p+

1

ρu/l
∇ ·
(
µu/l

(
∇~u+∇~uT

))
+

1

ρu/l
(σκnδs)

∂F

∂t
+∇ · (~uF ) = 0 (3)

The above equations are solved on a staggered grid. We use
a projection method [10] to first obtain an intermediate com-
ponent of velocity ~u∗ without the incompressibility constraint.
A pressure-poisson equation is then solved using a geometric
multigrid method [11] with this velocity-field to obtain a
pressure field compatible with incompressibility of the final
velocity field. The final velocity field is then obtained from
this intermediate velocity field. For solving equations at the
interfacial cells, we use a weighted average of fluid properties
given by ρ = (1 − F )ρu + Fρl where the convention that
F = 1 for the lower fluid and F = 0 for the upper fluid
has been used. A similar convention is followed for dynamic
viscosity. Surface tension is included as a body force using the
continuous surface force (CSF) [12] algorithm and curvature
calculations are done using the Direction Averaged Curvature
(DAC) method of [13]. The non-dimensional numbers which
govern the problem are µ ≡ µu/µl, ρ = ρu/ρl, ε ≡ a0/λ and
Ohnesorge number Oh ≡ µl/

√
ρlσλ. Note that a0 ≡ ak(0).

III. VALIDATION

Since we study capillary oscillations, we need to first
validate the capabilities of the surface tension implementation
in our code. Presented in Fig. 2 is the pressure jump across the
interface of a static circle of radius R = 0.05 cm. The pressure
jump should be σ/R = 72.86/0.05 = 1457.2 dyn/cm2 for
air-water. Integrated over 200 time steps, we produce the
required pressure jump and the associated spurious velocities
are of O(10−5)cm2/s. Further we present comparison of
the interface displacement at x = 0.5 for small amplitude
oscillations where analytical solution of Eq. 2 is available [8].
Fig. 3 compares the analytical solution obtained by [8] of Eq.
2 with simulations having µ = 0.01, ρ = 0.01, Oh = 0.01 and
ε = 0.01. A good match is seen along with grid independence.
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Fig. 2. Pressure jump in the static droplet test case at t = 0.5s. In CGS units
ρl = 0.001225, µl = 1.81X10−5, ρd = 1.0, µd = 8.9X10−4, σ =
72.86, R = 0.05, ∆x× ∆y = 0.002 × 0.002 and CFL = 0.8 [14].
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Fig. 3. Comparison of small amplitude oscillations and grid independence
test. µ = 0.01, ρ = 0.01, Oh = 0.01 and ε = 0.01. The time period is

scaled by τ ≡
√

σk3

ρl+ρu
.

IV. RESULTS AND DISCUSSION

Variation of non-dimensional amplitude with respect to
non-dimensional time is shown in Fig. 4. As ε is increased
the effect of non-linearity becomes increasingly visible. The
position of the interface starts deviating significantly from
linear predictions. Further non-linear effects are visible in Fig.
5. Here we have decomposed the instantaneous shape of the
interface as a Fourier series and plot the coefficient of the
Fourier modes as a function of time. The property of a linear
system is that it does not produce new modes and conserves the
energy of each mode which is excited at t = 0. As ε increases,
it is visible that new modes are generated (see the bump in
the case ε = 0.6 in Fig. 4). An interesting observation is that
the first few modes generated are all odd modes. Note that
boundary conditions do not allow sine modes to be generated
and only new cosine modes are generated. As time progresses
modes with higher wavenumbers are dissipated faster due to
viscosity. This is understood easily by looking the viscous
terms in Eq. 2. The generation of vorticity at the interface
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Fig. 4. Non-dimensional amplitude vs non-dimensional time for different ε,
µ = 0.01, ρ = 0.01, Oh = 0.01.

ck

Fig. 5. Fourier modes Ck at t/τ = 0, t/τ = 1.38 and t/τ = 17.55
respectively for ε = 0.6, µ = 0.01, ρ = 0.01, Oh = 0.01.

is shown in Fig. 6 as a function of the non-linear time-period
of oscillation for the case ε = 0.6. It is clearly seen that a
thin region around the interface has a high region of vorticity
of opposite signs. The time period of the first oscillation is
observed to increase with an increase in ε (Fig. 7) for different
density ratios.

V. CONCLUSIONS

We study here large amplitude capillary driven free oscilla-
tions of a standing wave on an interface. An in-house code has
been carefully benchmarked and results obtained from this are
reported. It is shown that the time-period of oscillation varies
with the amplitude, in agreement with the general behaviour
of non-linear oscillators. For small amplitudes, we get good
agreement with the linear analytical predictions of [8]. The
interface acts as a source of vorticity in these flows and
vorticity production is demonstrated in a high amplitude case.
New modes, different from the initial mode, are generated
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Fig. 6. Vorticity contours for ε = 0.6 at t = Tp/4, t = Tp/2 and t = 3Tp/4
respectively for ε = 0.6, µ = 0.01, ρ = 0.01, Oh = 0.01 where Tp is the
observed time period of first oscillation.
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Fig. 7. Time period for first oscillation for different ε for ρ = 1, ρ = 0.1
and σ = 1. Note that this is an inviscid simulation although some numerical
damping is present.

for increasing values of ε. Some of the results of this study
are expected to be useful for an understanding of forced
oscillations like Faraday waves in the non-linear regime.
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